The role of the sound’s qualities in the auditory imagery

Authors

  • Rubén Vázquez-Sánchez Universidade da Coruña (UDC)

DOI:

https://doi.org/10.37467/revtechno.v11.4467

Keywords:

Mental images, Auditory perception, Audition, Music, Cognitivism, Psychology

Abstract

Sound mental images are the product of copies or reconstructions of past perceptual experiences or the product of anticipation of possible future experiences, but in the absence of appropriate external stimuli. However, in music, how these interact with external visual perceptions in the recreation or generation of auditory mental images is not known for certain. Throughout this literature review, we will attempt to discern how each of the qualities of sound infers or elicits a response in thought processes and provides the semantic basis for musical language.

References

Aleman, A., Nieuwenstein, M., Böcker, K.B.E., & De Haan, E.H.F. (2000). Music training and mental imagery ability.

Neuropsychologia, 38(12), 1664-1668. https://doi.org/10.1016/s0028-3932(00)00079-8 DOI: https://doi.org/10.1016/S0028-3932(00)00079-8

Ammirante, P., Patel, A.D., & Russo, F.A. (2016). Synchronizing to auditory and tactile metronomes: A test of the auditory–motor enhancement hypothesis. Psychonomic Bulletin & Review, 23(6), 1882–1890. https:// doi.org/10.3758/s13423-016-1067-9 DOI: https://doi.org/10.3758/s13423-016-1067-9

Baharloo, S., Johnston, P.A., Service, S.K., Gitschier, J., & Freimer, N.B. (1998). Absolute pitch: an approach for identification of genetic and nongenetic components. American journal of human genetics, 62(2), 224– 231. https://doi.org/10.1086/301704 DOI: https://doi.org/10.1086/301704

Bailes, F.A. (2006). The use of experience-sampling methods to monitor musical imagery in everyday life. Musicae Scientiae, 10(2), 173-190. https://doi.org/10.1177%2F102986490601000202 DOI: https://doi.org/10.1177/102986490601000202

Bailes, F.A. (2007a). The prevalence and nature of imagined music in the everyday lives of music students.

Psychology of Music, 35(4), 555-570. https://doi.org/10.1177/0305735607077834 DOI: https://doi.org/10.1177/0305735607077834

Bailes, F.A. (2007b). Timbre as an Elusive Component of Imagery for Music. Empirical Musicology Review, 2(1), 21-34. https://doi.org/10.18061/1811/24476 DOI: https://doi.org/10.18061/1811/24476

Bailes F.A. (2009). Translating the musical image: case studies of expert musicians. En A. Chan & A. Noble (Eds.), Sounds in Translation: Intersections of Music, Technology and Society (pp. 41-60). ANU E Press. https:// doi.org/10.22459/st.09.2009.03 DOI: https://doi.org/10.22459/ST.09.2009.03

Bailes, F.A., & Bishop, L. (2012). Musical imagery in the creative process. En D. Collins (Ed.), The Act of Musical Composition: Studies in the Creative Process (pp. 53-77). Ashgate.

Bailes, F.A., Bishop, L., Stevens, C.J., & Dean, R.T. (2012). Mental imagery for musical changes in loudness. Frontiers in psychology, 3, 525. https://doi.org/10.3389/fpsyg.2012.00525 DOI: https://doi.org/10.3389/fpsyg.2012.00525

Baylor, G.W. (1972). A Treatise on the Mind‘s Eye: An Empirical Investigation of Visual Mental Imagery. [Doctoral Thesis] Carnegie-Mellon University. University Microfilms 72-12, 699.

Beaty, R.E., Burgin, C.J., Nusbaum, E.C., Kwapil, T.R., Hodges, D.A., & Silvia, P.J. (2013). Music to the inner ears: Exploring individual differences in musical imagery. Consciousness and Cognition, 22(4), 1163-1173. http://doi.org/10.1016/j.concog.2013.07.006 DOI: https://doi.org/10.1016/j.concog.2013.07.006

Bishop, L., Bailes, F., & Dean, R.T. (2013). Musical expertise and the ability to imagine loudness. PloS One, 8(2), e56052. https://doi.org/10.1371/journal.pone.0056052 DOI: https://doi.org/10.1371/journal.pone.0056052

Brodsky, W., Henik, A., Rubinstein, B.-S., & Zorman, M. (2003). Auditory imagery from musical notation in expert musicians. Perception & Psychophysics, 65(4), 602–612. https://doi.org/10.3758/BF03194586 DOI: https://doi.org/10.3758/BF03194586

Brodsky, W., Kessler, Y., Rubinstein, B.-S., Ginsborg, J., & Henik, A. (2008). The mental representation of music notation: Notational audiation. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 427-445. https://doi.org/10.1037/0096-1523.34.2.427 DOI: https://doi.org/10.1037/0096-1523.34.2.427

Brown, A.M., Kenwell, Z.R., Maraj, B.K., & Collins, D.F. (2008). “Go” signal intensity influences the sprint start. Medicine and science in sports and exercise, 40(6), 1142–1148. https://doi.org/10.1249/MSS.0b013e31816770e1 DOI: https://doi.org/10.1249/MSS.0b013e31816770e1

Clark, T., Lisboa, T., & Williamon, A. (2014). An investigation into musicians’ thoughts and perceptions during performance. Research Studies in Music Education, 36(1), 19–37. https://doi. org/10.1177/1321103X14523531 DOI: https://doi.org/10.1177/1321103X14523531

Clark, T., Williamon, A., & Aksentijevic, A. (2012). Musical imagery and imagination: the function, measurement and application of imagery skills for performance. En D.J. Hargreaves; D. Miell & R. MacDonald (Eds.), Musical Imaginations: Multidisciplinary Perspectives on Creativity, Performance and Perception (pp. 351– 365): Oxford Scholarship Online. https://doi.org/10.1093/acprof:oso/9780199568086.003.0022 DOI: https://doi.org/10.1093/acprof:oso/9780199568086.003.0022

Clarke, E.F. (1999). Rhythm and timing in music. En D. Deutsch (Ed.), Academic Press series in cognition and perception: A series of monographs and treatises. The psychology of music (p. 473–500). Academic Press.

Connell, L., Cai, Z.G., & Holler, J. (2013). Do you see what I’m singing? Visuospatial movement biases pitch perception. Brain and Cognition,81(1), 124–130. https://doi.org/10.1016/j.bandc.2012.09.005 DOI: https://doi.org/10.1016/j.bandc.2012.09.005

Costa-Faidella, J., Sussman, E., & Escera, C. (2017). Selective entrainment of brain oscillations drives auditory perceptual organization. Neuroimage, 159, 195-206. http://doi.org/10.1016/j.neuroimage.2017.07.056 Crowder, R.G. (1989). Imagery for musical timbre. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 472–478. https://doi.org/10.1037/0096-1523.15.3.472 DOI: https://doi.org/10.1016/j.neuroimage.2017.07.056

Daikoku, T., Takahashi, Y., Tarumoto, N., & Yasuda, H. (2018). Motor Reproduction of Time Interval Depends on Internal Temporal Cues in the Brain: Sensorimotor Imagery in Rhythm. Frontiers in psychology, 9: 1873. https://doi.org/10.3389/fpsyg.2018.01873 DOI: https://doi.org/10.3389/fpsyg.2018.01873

Dean, R.T., Bailes, F., & Schubert, E. (2011). Acoustic Intensity Causes Perceived Changes in Arousal Levels in Music: An Experimental Investigation. PLoS ONE 6(4), e18591. https://doi.org/10.1371/journal.pone.0018591 DOI: https://doi.org/10.1371/journal.pone.0018591

Deutsch, D. (1986). A musical paradox. Music Perception 3(3), 275–280. https://doi.org/10.2307/40285337 Deutsch, D., & Pierce. J.R. (1992). The climate of auditory imagery and music. En D. Reisberg (Ed.), Auditory Imagery (pp. 237-260). Hillsdale: Lawrence Erlbaum DOI: https://doi.org/10.2307/40285337

Doxey, C., & Wright, C. (1990) An exploratory study of children’s music ability. Early Childhood Research Quarterly, 5(3), 425–440. https://doi.org/10.1016/0885-2006(90)90031-U DOI: https://doi.org/10.1016/0885-2006(90)90031-U

Drai-Zerbib, V., Baccino, T., & Bigand, E. (2011). Sight-reading expertise: Cross-modality integration investigated using eye-tracking. Psychology of Music, 40(2), 216–235. http://doi.org/10.1177/0305735610394710 DOI: https://doi.org/10.1177/0305735610394710

Drake, C., & Bertrand, D. (2001). The quest for universals in temporal processing in music. Annals of the New York Academy of Sciences, 930(1), 17–27. https://doi.org/10.1111/j.1749-6632.2001.tb05722.x DOI: https://doi.org/10.1111/j.1749-6632.2001.tb05722.x

Edworthy, J., & Waring, H. (2006). The effects of music tempo and loudness level on treadmill exercise. Ergonomics, 49(15), 1597-1610. https://doi.org/10.1080/00140130600899104 DOI: https://doi.org/10.1080/00140130600899104

Escoffier, N., Sheng, D.Y.J., & Schirmer, A. (2010). Unattended musical beats enhance visual processing. Acta psychologica (Amsterdam), 135(1), 12–16. https://doi.org/10.1016/j.actpsy.2010.04.005 DOI: https://doi.org/10.1016/j.actpsy.2010.04.005

Farah, M.J., & Smith, A.F. (1983). Perceptual interference and facilitation with auditory imagery. Perception & Psychophysics, 33(5), 475–478. https://doi.org/10.3758/BF03202899 DOI: https://doi.org/10.3758/BF03202899

Farnsworth, P.R. (1958). The social psychology of music. The Dryden Press.

Fine, P.A., Wise, K.J., Goldemberg, R., & Bravo, A. (2015). Performing musicians’ understanding of the terms “mental practice” and “score analysis”. Psychomusicology: Music, Mind, and Brain, 25(1), 69-82. https:// doi.org/10.1037/pmu0000068 DOI: https://doi.org/10.1037/pmu0000068

Finke, R.A. (1985). Theories relating mental imagery to perception. Psychological Bulletin, 98(2), 236–259. https:// doi.org/10.1037/0033-2909.98.2.236 DOI: https://doi.org/10.1037/0033-2909.98.2.236

Finke, R.A. (1986). Mental imagery and the visual system. Scientific American, 254(3), 88–95. https://doi. org/10.1038/scientificamerican0386-88 DOI: https://doi.org/10.1038/scientificamerican0386-88

Floridou, G.A., Williamson, V.J., Stewart, L., & Müllensiefen, D. (2015). The Involuntary Musical Imagery Scale (IMIS). Psychomusicology: Music, Mind, and Brain, 25(1), 28–36. https://doi.org/10.1037/pmu0000067 DOI: https://doi.org/10.1037/pmu0000067

Fourie, E. (2004). The influence of visual interference on eye-hand span during piano sight-reading: teaching aspects. Musicus, 32(2), 85–88. https://hdl.handle.net/10520/EJC82911

Gámez, J.; Yc, K.; Ayala, Y.A.; Dotov, D.; Prado, L., & Merchant, H. (2018). Predictive rhythmic tapping to isochronous and tempo changing metronomes in the nonhuman primate. Annals of the New York Academy of Sciences, 1423(1), 396-414. https://doi.org/10.1111/nyas.13671 DOI: https://doi.org/10.1111/nyas.13671

Gelding, R.W., Harrison, P.M.C., Silas, S., Johnson, B.W., Thompson, W.F., & Müllensiefen, D. (2020). An efficient and adaptive test of auditory mental imagery. Psychological Research. https://doi.org/10.1007/s00426- 020-01322-3 DOI: https://doi.org/10.1007/s00426-020-01322-3

Godøy, R.I., & Jørgensen, H. (2001). Musical Imagery. Taylor & Francis.

Gordon, E.E. (1984). A Longitudinal Predictive Validity Study of the Intermediate Measures of Music Audiation. Bulletin of the Council for Research in Music Education, (78), 1-23. Recuperado de http:// www.jstor.org/stable/40317839

Gordon, E.E. (1985). Research studies in audiation: I. Bulletin of the Council for Research in Music Education, 84, 34–50. Recuperado de https://www.jstor.org/stable/40375310

Gordon, E.E. (1987) The nature, description, measurement, and evaluation of music aptitudes. GIA Publications. Gordon, E.E. (1993). Learning sequences in music: Skill, content, and patterns. GIA Publications.

Gordon, E.E. (1997). Learning sequences in music: skill, content and patterns: A Music Learning Theory. GIA Publications.

Gordon, E.E. (2001). Music Aptitude and Related Tests. An Introduction. GIA Publications. Gordon, E.E. (2004). Continuing Studies in Music Aptitudes. GIA Publications.

Gordon, E.E. (2011). Roots of music learning theory and audiation. GIA Publications.

Grahn, J.A., & Rowe, J.B. (2009). Feeling the beat: Premotor and striatal interactions in musicians and nonmusicians during beat perception. Journal of Neuroscience, 29(23), 7540–7548. https://doi.org/10.1523/ JNEUROSCI.2018-08.2009 DOI: https://doi.org/10.1523/JNEUROSCI.2018-08.2009

Grey, J. M.. (1977). Multidimensional perceptual scaling of musical timbres. ournal of the Acoustical Society of America, 61(15), 1270–1277. https://doi.org/10.1121/1.381428 DOI: https://doi.org/10.1121/1.381428

Grube, M.; Lee, K.-H.; Griffiths, T.D., Barker, A.T., & Woodruff, P.W. (2010). Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front. Psychol. 1:171. https://doi.org/10.3389/fpsyg.2010.00171 DOI: https://doi.org/10.3389/fpsyg.2010.00171

Grutzmacher, P.A. (1987). The Effect of Tonal Pattern Training on the Aural Perception, Reading Recognition, and Melodic Sight-reading Achievement of First-Year Instrumental Music Students. Journal of Research in Music Education, 35(3), 171-181. https://doi.org/10.2307/3344959 DOI: https://doi.org/10.2307/3344959

Haas, E.C., & Edworthy, J. (1996). Designing urgency into auditory warnings using pitch, speed and loudness. DOI: https://doi.org/10.1049/cce:19960407

Computing & Control Engineering Journal, 7(4), 193–198. https://doi.org/10.1049/cce:19960407 Hajda, J. M., Kendall, R. A., Carterette, E. C., & Harshberger, M. L. (1997). Methodological issues in timbre research.

En I. Deliège & J. Sloboda (Eds.), Perception and cognition of music (pp. 253–306). Psychology Press/ Erlbaum (UK) Taylor & Francis.

Halpern A.R. (1989). Memory for the absolute pitch of familiar songs. Memory & cognition, 17(5), 572–581. https://doi.org/10.3758/BF03197080 DOI: https://doi.org/10.3758/BF03197080

Halpern, A.R. (2003). Cerebral substrates of musical imagery. En I. Peretz & R.J. Zatorre (Eds.), The cognitive neuroscience of music (pp. 217–230). Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198525202.003.0015

Halpern, A.R., & Zatorre, R.J. (1999). When that tune runs through your head: A PET investigation of auditory imagery for familiar melodies. Cerebral Cortex, 9(7), 697-704. https://doi.org/10.1093/cercor/9.7.697 DOI: https://doi.org/10.1093/cercor/9.7.697

Halpern, A.R., Zatorre, R.J., Bouffard, M., & Johnson, J.A. (2004). Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia, 42(9), 1281-1292. https://doi.org/10.1016/j. neuropsychologia.2003.12.017 DOI: https://doi.org/10.1016/j.neuropsychologia.2003.12.017

Handel, S. (1995). Timbre perception and auditory object identification. En B. C. J. Moore (Ed.), Hearing (pp. 425– 461). Academic Press. https://doi.org/10.1016/B978-012505626-7/50014-5 DOI: https://doi.org/10.1016/B978-012505626-7/50014-5

Hebb, D.O. (1966). Textbook of psychology (2nd ed.). Saunders. Hebb, D.O. (1968). Concerning imagery. Psychological Review, 75(6), 466–477. https://doi.org/10.1037/h0026771 Hemming, J., & Merrill, J. (2015). On the distinction between involuntary musical imagery, musical hallucinosis, DOI: https://doi.org/10.1037/h0026771

and musical hallucinations. Psychomusicology: Music, Mind, and Brain, 25(4), 435–442. https://doi. org/10.1037/pmu0000112

Hinton, G. (1979). Some Demonstrations of the Effects of Structural Descriptions in Mental Imagery. Cognitive Science, 3(3), 231-250. https://doi.org/10.1207/s15516709cog0303_3 DOI: https://doi.org/10.1207/s15516709cog0303_3

Honing, H. (2012). Without it no music: beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences, 1252(1), 85–91. https://doi.org/10.1111/j.1749-6632.2011.06402.x DOI: https://doi.org/10.1111/j.1749-6632.2011.06402.x

Hubbard, T.L. (2018). Some Methodological and Conceptual Considerations in Studies of Auditory Imagery. Auditory Perception & Cognition, 1(1,2), 6-41. https://doi.org/10.1080/25742442.2018.1499001 DOI: https://doi.org/10.1080/25742442.2018.1499001

Hubbard, T.L., & Stoeckig, K. (1988). Musical imagery: Generation of tones and chords. Journal of Experimental Psychology: Learning Memory and Cognition, 14(4), 656-667. https://doi.org/10.1037//0278- 7393.14.4.656 DOI: https://doi.org/10.1037/0278-7393.14.4.656

Hutchinson, J.C., & Sherman, T. (2014). The relationship between exercise intensity and preferred music intensity. DOI: https://doi.org/10.1037/spy0000008

Sport, Exercise, and Performance Psychology, 3(3), 191–202. https://doi.org/10.1037/spy0000008 Intons-Peterson, M.J. (1980). The role of loudness in auditory imagery. Memory & Cognition, 8(5), 385–393. https://doi.org/10.3758/BF03211134 DOI: https://doi.org/10.3758/BF03211134

Intons-Peterson, M.J. (1992). Components of auditory imagery. En D. Reisberg (Ed.), Auditory imagery (p. 45–71). Lawrence Erlbaum Associates, Inc.

Iversen, J.R., & Balasubramaniam, R. (2016). Synchronization and temporal processing. Curr. Opin. Behav. Sci. 8, 175–180. https://doi.org/10.1016/j.cobeha.2016.02.027 DOI: https://doi.org/10.1016/j.cobeha.2016.02.027

Iversen, J.R., Patel, A.D., Nicodemus, B., & Emmorey, K. (2015). Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition, 134, 232–244. https://doi.org/10.1016/j.cognition.2014.10.018 DOI: https://doi.org/10.1016/j.cognition.2014.10.018

Jacoby, N., & McDermott, J.H. (2017). Integer Ratio Priors on Musical Rhythm Revealed Cross-culturally by Iterated Reproduction. Current biology, 27(3), 359–370. https://doi.org/10.1016/j.cub.2016.12.031 DOI: https://doi.org/10.1016/j.cub.2016.12.031

Jacques-Dalcroze, E. (1921). Rhythm, meter, and education. Putnam. DOI: https://doi.org/10.1177/002205742109401204

Jakubowski, K., Finkel, S., Stewart, L., & Müllensiefen, D. (2017). Dissecting an earworm: Melodic features and song popularity predict involuntary musical imagery. Psychology of Aesthetics, Creativity, and the Arts, 11(2), 122–135. https://doi.org/10.1037/aca0000090 DOI: https://doi.org/10.1037/aca0000090

Janata, P., & Paroo, K. (2006). Acuity of auditory images in pitch and time. Perception & Psychophysics,68(5), 829– 844. https://doi.org/10.3758/BF03193705. DOI: https://doi.org/10.3758/BF03193705

Jeannerod, M., & Decety, J. (1995). Mental motor imagery: a window into the representational stages of action. Curr. DOI: https://doi.org/10.1016/0959-4388(95)80099-9

Opin. Neurobiol., 5(6), 727–732. https://doi.org/10.1016/0959-4388(95)80099-9 Karageorghis, C.I., & Priest, D.-L. (2012). Music in the exercise domain: a review and synthesis (Part I). International

Review of Sport and Exercise Psychology, 5(1), 44-66. https://doi.org/10.1080/1750984X.2011.631026 Karpinski, G.S. (2000). Aural skills acquisition: The development of listening, reading, and performing skills in college-level musicians. Oxford University Press.

Keller, P.E. (2012). Mental imagery in music performance: underlying mechanisms and potential benefits. Annals of the New York Academy of Sciences, 1252(1), 206-213. https://doi.org/10.1111/j.1749- 6632.2011.06439.x DOI: https://doi.org/10.1111/j.1749-6632.2011.06439.x

Keller, P.E., & Appel, M. (2010). Individual differences, auditory imagery, and the coordination of body movements and sounds in musical ensembles. Music Perception: An Interdisciplinary Journal,28(1), 27–46. https:// doi.org/10.1525/mp.2010.28.1.27 DOI: https://doi.org/10.1525/mp.2010.28.1.27

Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63–77. https://doi.org/10.1016/j.tics.2018.10.006 DOI: https://doi.org/10.1016/j.tics.2018.10.006

Kosslyn, S. (1980). Image and Mind. Harvard University Press.

Kosslyn, S.M., Reiser, B.J., Farah, M.J., & Fliegel, S.L. (1983). Generating visual images: Units and relations. Journal of Experimental Psychology: General, 112(2), 278–303. https://doi.org/10.1037/0096-3445.112.2.278 Krumhansl, C.L. (2000). Rhythm and pitch in music cognition. Psychological Bulletin, 126(1), 159–179. https://doi.org/10.1037/0033-2909.126.1.159 DOI: https://doi.org/10.1037/0096-3445.112.2.278

Large, E.W., & Jones, M.R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–159. https://doi.org/10.1037/0033-295X.106.1.119 DOI: https://doi.org/10.1037/0033-295X.106.1.119

Large, E.W., & Snyder, J.S. (2009). Pulse and meter as neural resonance. Annals of the New York Academy of Sciences, 1169(1), 46–57. https://doi.org/10.1111/j.1749-6632.2009.04550.x DOI: https://doi.org/10.1111/j.1749-6632.2009.04550.x

Lerdahl, F. (1987). Timbre hierarchies. Contemporary Music Review, 2(1), 135-160. https://doi. org/10.1080/07494468708567056 DOI: https://doi.org/10.1080/07494468708567056

Levitin, D.J. (1994). Absolute memory for musical pitch: evidencefrom the production of learned melodies.Perception & psychophysics, 56(4), 414–423. https://doi.org/10.3758/bf03206733 DOI: https://doi.org/10.3758/BF03206733

Liikkanen, L.A. (2008). Music in everymind: Commonality of involuntary musical imagery. En K. Miyazaki, Y. Hiraga,

M. Adachi, Y. Nakajima y M. Tsuzaki (Eds.). Proceedings of the 10th International Conference on Music Perception and Cognition (ICMPC10) (pp. 408-412), Sapporo, Japan. Recuperado de http://l.kryptoniitti. com/lassial/files/publications/080904-Music_in_everymind_pdf.pdf

Liikkanen, L.A. (2012). Involuntary Music Among Normal Population and Clinical Cases. Advances in clinical neuroscience and rehabilitation, 12(4), 12-14. Recuperado de http://www.acnr.co.uk/14%20 SO12/12%20Review%20article%202.pdf

Lucas, B.J., Schubert, E., & Halpern, A.R. (2010). Perception of Emotion in Sounded and Imagined Music. Music Perception, 27(5), 399–412. https://doi.org/10.1525/mp.2010.27.5.399 DOI: https://doi.org/10.1525/mp.2010.27.5.399

Marschark, M., Richman, C.L., Yuille, J.C., & Hunt, R.R. (1987). The role of imagery in memory: On shared and distinctive information. Psychological Bulletin, 102(1), 28–41. https://doi.org/10.1037/0033- 2909.102.1.28 DOI: https://doi.org/10.1037/0033-2909.102.1.28

McAdams, S. (1993). Recognition of sound sources and events. En S. McAdams & E. Bigand (Eds.), Thinking in sound: The cognitive psychology of human audition (pp. 146–198). Clarendon Press/Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198522577.003.0006 DOI: https://doi.org/10.1093/acprof:oso/9780198522577.003.0006

McAdams, S. (2013). Musical timbre perception. In D. Deutsch (Ed.), The psychology of music (pp. 35–67). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-381460-9.00002-X DOI: https://doi.org/10.1016/B978-0-12-381460-9.00002-X

McAuley, J.D., Jones, M.R., Holub, S., Johnston, H.M., & Miller, N.S. (2006). The time of our lives: life span development of timing and event tracking. Journal of experimental psychology. General, 135(3), 348–367. https://doi. org/10.1037/0096-3445.135.3.348 DOI: https://doi.org/10.1037/0096-3445.135.3.348

Miyazaki, K., & Ogawa, Y. (2006). Learning Absolute Pitch by Children: A Cross-Sectional Study. Music Perception: An Interdisciplinary Journal, 24(1), 63-78. https://doi.org/10.1525/mp.2006.24.1.63 DOI: https://doi.org/10.1525/mp.2006.24.1.63

Morillon, B., & Baillet, S. (2017). Motor origin of temporal predictions in auditory attention. PNAS, 114(42), E8913-E8921. https://doi.org/10.1073/pnas.1705373114 DOI: https://doi.org/10.1073/pnas.1705373114

Müllensiefen, D., Fry, J., Jones, R., Jilka, S., Stewart, L., & Williamson, V.J. (2014). Individual Differences Predict Patterns in Spontaneous Involuntary Musical Imagery. Music Perception, 31(4), 323-338. https://doi. org/10.1525/mp.2014.31.4.323 DOI: https://doi.org/10.1525/mp.2014.31.4.323

Murgia, M., & Galmonte, A. (2015). The role of sound in motor perception and execution. Open Psychol. J. 8(1),

–173. http://doi.org/10.2174/1874350101508010171 DOI: https://doi.org/10.2174/1874350101508010171

Neisser, U. (1976). Cognition and Reality. Principles and implications of cognitive psychology. W.H. Freeman. Neuhoff, J.G. (2001). An Adaptive Bias in the Perception of Looming Auditory Motion. Ecological Psychology, 13(2), DOI: https://doi.org/10.1207/S15326969ECO1302_2

-110. https://doi.org/10.1207/S15326969ECO1302_2 Nozaradan, S., Peretz, I., Missal, M., & Mouraux, A. (2011). Tagging the neuronal entrainment to beat and meter. Journal

of Neuroscience, 31(28), 10234 – 10240. https://doi.org/10.1523/JNEUROSCI.0411-11.2011 DOI: https://doi.org/10.1523/JNEUROSCI.0411-11.2011

Oare, S. (2014). Aural Image in Practice: A Multicase Analysis of Instrumental Practice in Middle School Learners. Update: Applications of Research in Music Education, 34(2), 37-44. https://doi. org/10.1177/8755123314550415 DOI: https://doi.org/10.1177/8755123314550415

Okada, H., & Matsuoka, K. (1992). Effects of auditory imagery on the detection of a pure tone in white noise: Experimental evidence of the auditory perky effect. Perceptual and Motor Skills, 74(2), 443–448. https:// doi.org/10.2466%2Fpms.1992.74.2.443 DOI: https://doi.org/10.2466/pms.1992.74.2.443

Palmer, C., & Krumhansl, C. L. (1990). Mental representations for musical meter. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 728–741. https://doi.org/10.1037/0096-1523.16.4.728 DOI: https://doi.org/10.1037/0096-1523.16.4.728

Patel, A.D., Iversen, J.R., Chen, Y., & Repp, B.H. (2005). The influence of metricality and modality on synchronization with a beat. Experimental Brain Research, 163(2), 226–238. https://doi.org/10.1007/s00221-004- 2159-8 DOI: https://doi.org/10.1007/s00221-004-2159-8

Patel, A.D., & Iversen, J.R. (2014). The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Frontiers in systems neuroscience, 8, 57. https:// doi.org/10.3389/fnsys.2014.00057 DOI: https://doi.org/10.3389/fnsys.2014.00057

Pecenka, N., & Keller, P.E. (2009). The Relationship Between Auditory Imagery and Musical Synchronization Abilities in Musicians. En J. Louhivuori, T. Eerola, S. Saarikallio, T. Himberg, P.-S. Eerola (Eds.), Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music (ESCOM 2009) (pp. 409-415). Jyväskylä, Finland: Universidad de Jyväskylä.

Penel, A., & Drake, C. (2004). Timing variations in music performance: Musical communication, perceptual compensation, and/or motor control? Perception & Psychophysics,66(4), 545–562. https://doi. org/10.3758/BF03194900 DOI: https://doi.org/10.3758/BF03194900

Pitt, M.A., & Crowder, R.G. (1992). The role of spectral and dynamic cues in imagery for musical timbre. J. Exp. DOI: https://doi.org/10.1037/0096-1523.18.3.728

Psychol. Hum. Percept. Perform., 18(3), 728–238. https://doi.org/10.1037/0096-1523.18.3.728 Pylyshyn, Z.W. (1973). What the mind‘s eye tells the mind‘s brain: A critique of mental imagery. Psychological

Bulletin, 80(1), 1–24. https://doi.org/10.1037/h0034650 DOI: https://doi.org/10.1037/h0034650

Pylyshyn, Z.W. (1978). Imagery and Artificial Intelligence. Minnesota Studies in the Philosophy of Science, 9, 19-55. https://hdl.handle.net/11299/185336

Pylyshyn, Z. W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological Review, 88(1), 16–45. https://doi.org/10.1037/0033-295X.88.1.16 DOI: https://doi.org/10.1037/0033-295X.88.1.16

Pylyshyn, Z. W. (2002). Mental imagery: in search of a theory. The Behavioral and brain sciences, 25(2), 157–237. https://doi.org/10.1017/s0140525x02000043 DOI: https://doi.org/10.1017/S0140525X02000043

Rajendran, V.G.; Teki, S., & Schnupp, J.W.H. (2018). Temporal Processing in Audition: Insights from Music.

Neuroscience, 389(1), 4-18. https://doi.org/10.1016/j.neuroscience.2017.10.041 DOI: https://doi.org/10.1016/j.neuroscience.2017.10.041

Ravignani, A., Delgado, T., & Kirby, S. (2017). Musical evolution in the lab exhibits rhythmic universals. Nature Human Behaviour, 1: 0007. https://doi.org/10.1038/s41562-016-0007 DOI: https://doi.org/10.1038/s41562-016-0007

Reisberg, D. (2010). Auditory imagery. En E.B. Goldstein (Ed.), Encyclopedia of perception (pp. 164-167). Sage Publications, Inc. https://dx.doi.org/10.4135/9781412972000 DOI: https://doi.org/10.4135/9781412972000

Repp, B.H. (1999). Effects of auditory feedback deprivation on expressive piano performance. Music Perception, 16(4), 409-438. https://doi.org/10.2307/40285802 DOI: https://doi.org/10.2307/40285802

Repp, B.H. (2001). Effects of music perception and imagery on sensorimotor synchronization with complex timing patterns. Ann. N.Y. Acad. Sci. 930, 409–411. https://doi.org/10.1111/j.1749-6632.2001.tb05754.x DOI: https://doi.org/10.1111/j.1749-6632.2001.tb05754.x

Repp, B.H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin and Review, 12(6), 969-992. https://doi.org/10.3758/BF03206433 DOI: https://doi.org/10.3758/BF03206433

Repp B.H. (2007). Hearing a melody in different ways: multistability of metrical interpretation, reflected in rate limits of sensorimotor synchronization. Cognition, 102(3), 434–454. https://doi.org/10.1016/j. cognition.2006.02.003 DOI: https://doi.org/10.1016/j.cognition.2006.02.003

Repp B.H., Iversen J.R., & Patel A.D. (2008). Tracking an imposed beat within a metrical grid. Music Perception, 26(1), 1–18. https://doi.org/10.1525/mp.2008.26.1.1 DOI: https://doi.org/10.1525/mp.2008.26.1.1

Repp, B.H., & Su, Y.H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403–452. https://doi.org/10.3758/s13423-012-0371-2 DOI: https://doi.org/10.3758/s13423-012-0371-2

Révész, G. (1953). Introduction to the psychology of music. Londres, Reino Unido: Longmans, Green & Co.

Ross, J.M., Iversen, JR., & Balasubramaniam, R. (2016). Motor simulation theories of musical beat perception. Neurocase, 22(6), 558–565. https://doi.org/10.1080/13554794.2016.1242756 DOI: https://doi.org/10.1080/13554794.2016.1242756

Safaie, M., Jurado-Parras, M.T., Sarno, S., Louis, J., Karoutchi, C., Petit, L.F., Pasquet, M.O., Eloy, C., & Robbe, D. (2020). Turning the body into a clock: Accurate timing is facilitated by simple stereotyped interactions with the environment. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 13084–13093. https://doi.org/10.1073/pnas.1921226117 DOI: https://doi.org/10.1073/pnas.1921226117

Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Tamada, T., Iwata, N.K., & Nielsen, M. (1999). Neural representation of a rhythm depends on its interval ratio. J. Neurosci., 19(22), 10074–10081. https://doi.org/10.1523/ JNEUROSCI.19-22-10074.1999 DOI: https://doi.org/10.1523/JNEUROSCI.19-22-10074.1999

Seashore, C.E. (1919). Thepsychology ofmusictalent. Silver, Burdett and Company. https://doi.org/10.1037/13031- 000

Seashore, C.E. (1938). The psychology of music. McGraw Hill. DOI: https://doi.org/10.2307/3385268

Simmons, J.C.H. (1981). An investigation of relationships among primary-level student performance on selected measures of music aptitude, scholastic aptitude, and academic achievement (Tesis doctoral). University of Virginia, Virginia. Disponible en Dissertation Abstracts International, sect. A,42(4), 1529A.

Skinner, B.F. (1974). About Behaviorism. Knopf.

Soria-Urios, G., Duque, P., & García-Moreno, J.M. (2011). Música y cerebro: fundamentos neurocientíficos y trastornos musicales. Rev Neurol, 52(1), 45-55. https://doi.org/10.33588/rn.5201.2010578 DOI: https://doi.org/10.33588/rn.5201.2010578

Stupacher, J., Wood, G., & Witte, M. (2017). Neural Entrainment to Polyrhythms: A Comparison of Musicians and Non-musicians. Frontiers in neuroscience, 11, 208. https://doi.org/10.3389/fnins.2017.00208 DOI: https://doi.org/10.3389/fnins.2017.00208

Su, Y.H., & Pöppel, E. (2012). Body movement enhances the extraction of temporal structures in auditory sequences. Psychological research, 76(3), 373–382. https://doi.org/10.1007/s00426-011-0346-3 DOI: https://doi.org/10.1007/s00426-011-0346-3

Tanaka, S., & Kirino, E. (2017). Dynamic Reconfiguration of the Supplementary Motor Area Networkduring Imagined Music Performance. Front. Hum. Neurosci., 11:606. https://doi.org/10.3389/fnhum.2017.00606 DOI: https://doi.org/10.3389/fnhum.2017.00606

Teki, S., Grube, M., Kumar, S., & Griffiths, T.D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. J. Neurosci., 31(10), 3805–3812. https://doi.org/10.1523/JNEUROSCI.5561-10.2011 DOI: https://doi.org/10.1523/JNEUROSCI.5561-10.2011

Thomas, N. J. T. (1999). Are theories of imagery theories of imagination? An active perception approach to conscious mental content. Cognitive Science, 23(2), 207–245. https://doi.org/10.1016/S0364-0213(99)00004-X DOI: https://doi.org/10.1207/s15516709cog2302_3

Thomas, N.J.T.(2009). Visual Imageryand Consciousness. En W.P. Banks(Ed.),Encyclopediaof Consciousness (volume 2, pp. 445-457). Elsevier/Academic Press. https://doi.org/10.1016/B978-012373873-8.00083-9 DOI: https://doi.org/10.1016/B978-012373873-8.00083-9

Thoret, E., Caramiaux, B., Depalle, P., & McAdams, S. (2020). Learning metrics on spectrotemporal modulations reveals the perception of musical instrument timbre. Nature Human Behaviour, 5(3): 369-377. https:// doi.org/10.1038/s41562-020-00987-5 DOI: https://doi.org/10.1038/s41562-020-00987-5

Toiviainen, P., Tervaniemi, M., Louhivuori, J., Saher, M., Huotilainen, M., & Näätänen, R. (1998). Timbre similarity: Convergence of neural, behavioral, and computational approaches. Music Perception, 16(2), 223– 241. https://doi.org/10.2307/40285788 DOI: https://doi.org/10.2307/40285788

Trehub, S.E. (2015). Cross-cultural convergence of musical features. PNAS, 112(29), 8809-8810. https://doi. org/10.1073/pnas.1510724112 DOI: https://doi.org/10.1073/pnas.1510724112

Van der Steen, M.C., & Keller, P.E. (2013). The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization. Frontiers in Human Neuroscience, 7: 253. https://doi.org/10.3389/fnhum.2013.00253 DOI: https://doi.org/10.3389/fnhum.2013.00253

Van Dyck, E. (2019). Musical Intensity Applied in the Sports and Exercise Domain: An Effective Strategy to Boost Performance? Front. Psychol., 10, p.1145. https://doi.org/10.3389/fpsyg.2019.01145 DOI: https://doi.org/10.3389/fpsyg.2019.01145

Vuvan, D.T., & Schmuckler, M.A. (2011). Tonal hierarchy representations in auditory imagery. Memory & cognition, 39(3), 477–490. https://doi.org/10.3758/s13421-010-0032-5 DOI: https://doi.org/10.3758/s13421-010-0032-5

Webb, M.N.A. (1984). An investigation of the relationship of musical aptitude and intelligence of students at the third grade level (Doctoral dissertation). University of North Carolina, Greensboro. Disponible en http:// libres.uncg.edu/ir/listing.aspx?id=25797

Weir, G., Williamson, V.J., & Müllensiefen, D. (2015). Increased involuntary musical mental activity is not associated with more accurate voluntary musical imagery. Psychomusicology: Music, Mind, and Brain, 25(1), 48– 57. https://doi.org/10.1037/pmu0000076 DOI: https://doi.org/10.1037/pmu0000076

Wellek, A. (1963). Musikpsychologie und Musikästhetik: Grundriss der systematischen Musikwissenschaft. Frankfurt, Alemania: Akademische Verlagsgesellschaft.

Williams, T.I. (2015). The classification of involuntary musical imagery: The case for earworms. Psychomusicology: Music, Mind, and Brain, 25(1), 5–13. https://doi.org/10.1037/pmu0000082 DOI: https://doi.org/10.1037/pmu0000082

Williamson, V.J., Jilka, S.R., Fry, J., Finkel, S., Müllensiefen, D., & Stewart, L. (2012). How do “earworms” start? Classifying the everyday circumstances of Involuntary Musical Imagery. Psychology of Music, 40(3), 259- 284. https://doi.org/10.1177/0305735611418553 DOI: https://doi.org/10.1177/0305735611418553

Wu, J., Yu, Z., Mai, X., Wei, J., & Luo, Y. (2010). Pitch and loudness information encoded in auditory imagery as revealed by event-related potentials. Psychophysiology 48(3), 415–419. https://doi.org/10.1111/j.1469- 8986.2010.01070.x DOI: https://doi.org/10.1111/j.1469-8986.2010.01070.x

Zalta, A., Petkoski, S., & Morillon, B. (2020). Natural rhythms of periodic temporal attention. Nature Communications, 11, 1051. https://doi.org/10.1038/s41467-020-14888-8 DOI: https://doi.org/10.1038/s41467-020-14888-8

Zarco, W.; Merchant, H.; Prado, L., & Méndez, J.C. (2009). Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. Journal of neurophysiology, 102(6), 3191– 3202. https://doi.org/10.1152/jn.00066.2009 DOI: https://doi.org/10.1152/jn.00066.2009

Zatorre, R.J., & Halpern, A.R. (2005). Mental Concerts: Musical Imagery and Auditory Cortex. Neuron, 47(1), 9-12. https://doi.org/10.1016/j.neuron.2005.06.013 DOI: https://doi.org/10.1016/j.neuron.2005.06.013

Zatorre, R.J., Halpern, A.R., Perry, D.W., Meyer, E., & Evans, A.C. (1996). Hearing in the Mind’s Ear: A PET Investigation of Musical Imagery and Perception. Journal of cognitive neuroscience, 8(1), 29–46. https:// doi.org/10.1162/jocn.1996.8.1.29 DOI: https://doi.org/10.1162/jocn.1996.8.1.29

Published

2022-12-29

How to Cite

Vázquez-Sánchez, R. . (2022). The role of the sound’s qualities in the auditory imagery. TECHNO REVIEW. International Technology, Science and Society Review /Revista Internacional De Tecnología, Ciencia Y Sociedad, 11(5), 1–16. https://doi.org/10.37467/revtechno.v11.4467