Estándares y Clasificación de la Representación de la información y de los Niveles de Virtualidad en el medio de la realidad extendida

Hacia un Modelo Taxonómico de un Paradigma XR

Autores

DOI:

https://doi.org/10.37467/revtechno.v11.3494

Palavras-chave:

Realidad extendida, Ciencias de la computación, Entornos virtuales, Tecnologías de la información y la comunicación, Tecnología interactiva, Tecnología inmersiva

Resumo

La realidad extendida es una de las tecnologías que están adquiriendo importancia en el contexto actual ya que posibilita un enorme grado de interacción con el entorno y la información digitales. Uno de los factores fundamentales de este medio, de enorme complejidad, es el estudio de sus rasgos visuales e inmersivos. De ahí surge la necesidad de establecer una serie de estándares de representación de la información, teniendo en cuenta factores como el grado de virtualidad o iconicidad (nivel de representación), tratando se establecer las bases para el desarrollo de un Paradigma XR exportable a otras dimensiones. 

Referências

Andrews, C., Southworth, M. K., Silva, J. N., & Silva, J. R. (2019). Extended reality in medical practice. Current treatment options in cardiovascular medicine, 21(4), 1-12. https://bit.ly/3RSFtLK DOI: https://doi.org/10.1007/s11936-019-0722-7

Aylett, R., & Louchart, S. (2003). Towards a narrative theory of virtual reality. Virtual Reality, 7(1), 2-9. https://link.springer.com/article/10.1007%2Fs10055-003-0114-9 DOI: https://doi.org/10.1007/s10055-003-0114-9

Banfi, F., & Previtali, M. (2021). Human–Computer Interaction Based on Scan-to-BIM Models, Digital Photogrammetry, Visual Programming Language and eXtended Reality (XR). Applied Sciences, 11(13), 6109. https://www.mdpi.com/2076-3417/11/13/6109 DOI: https://doi.org/10.3390/app11136109

Bernardo, A. (2017). Virtual reality and simulation in neurosurgical training. World neurosurgery, 106, 1015-1029 https://www.sciencedirect.com/science/article/abs/pii/S1878875017310355 DOI: https://doi.org/10.1016/j.wneu.2017.06.140

Bucher, J. (2017). Storytelling for virtual reality: Methods and principles for crafting immersive narratives. Routledge. https://bit.ly/3CPEFSz DOI: https://doi.org/10.4324/9781315210308

Campos, J., Hornsby, K., & Egenhofer, M. (2003). A temporal model of virtual reality objects and their semantics. J. Vis. Lang. Comput, 14, 469-492. https://bit.ly/39mWtWQ DOI: https://doi.org/10.1016/S1045-926X(03)00045-4

Castells, P. (2003). La web semántica. Sistemas interactivos y colaborativos en la web, 195-212. https://bit.ly/39lZgiL

Codina, L., & Rovira, C. (2006). La web semántica. In Tendencias en documentación digital. Trea. http://eprints.rclis.org/8899/

Chuah, S. H. W. (2018). Why and who will adopt extended reality technology? Literature review, synthesis, and future research agenda. Literature Review, Synthesis, and Future Research Agenda (December 13, 2018). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3300469 DOI: https://doi.org/10.2139/ssrn.3300469

Dooley, K. (2017). Storytelling with virtual reality in 360-degrees: a new screen grammar. Studies in Australasian Cinema, 11(3), 161-171. https://bit.ly/3CPEPt9 DOI: https://doi.org/10.1080/17503175.2017.1387357

Durán Fonseca, E., Rubio-Tamayo, J. L. R., & Alves, P. (2021). Niveles de diseño narrativo, espacial y de interacción para el desarrollo de contenidos en el medio de la realidad virtual. ASRI: Arte y sociedad. Revista de investigación, (19), 96-111. https://bit.ly/3MxBh2T

Fast-Berglund, Å., Gong, L., & Li, D. (2018). Testing and validating Extended Reality (xR) technologies in manufacturing. Procedia Manufacturing, 25, 31-38. https://bit.ly/3erEILU DOI: https://doi.org/10.1016/j.promfg.2018.06.054

Grant, S. C., & Magee, L. E. (1998). Contributions of proprioception to navigation in virtual environments. Human Factors, 40(3), 489-497. https://bit.ly/3rQf46I DOI: https://doi.org/10.1518/001872098779591296

Greengard, S. (2019). Virtual reality. Mit Press. https://bit.ly/2XFZEq4 DOI: https://doi.org/10.7551/mitpress/11836.001.0001

Guilbaud, P., Guilbaud, T. C., & Jennings, D. (2021, July). Extended Reality, Pedagogy, and Career Readiness: A Review of Literature. In International Conference on Human-Computer Interaction (pp. 595-613). Springer, Cham. https://bit.ly/3D4g3qx DOI: https://doi.org/10.1007/978-3-030-77599-5_41

Han, X., Liu, J., Tan, B., & Duan, L. (2021). Design and Implementation of Smart Ocean Visualization System Based on Extended Reality Technology. J. Web Eng., 20(2), 557-574 https://bit.ly/2XFZGhG DOI: https://doi.org/10.13052/jwe1540-9589.20215

Harley, D., Verni, A., Willis, M., Ng, A., Bozzo, L., & Mazalek, A. (2018, March). Sensory vr: Smelling, touching, and eating virtual reality. In Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction (pp. 386-397). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339311/ DOI: https://doi.org/10.1145/3173225.3173241

Jantz, J., Molnar, A., & Alcaide, R. (2017). A brain-computer interface for extended reality interfaces. In ACM SIGGRAPH 2017 VR Village (pp. 1-2). https://bit.ly/3MrrdZo DOI: https://doi.org/10.1145/3089269.3089290

Jones, S. (2017). Disrupting the narrative: immersive journalism in virtual reality. Journal of Media Practice, 18(2-3), 171-185. https://bit.ly/3g8RwXW DOI: https://doi.org/10.1080/14682753.2017.1374677

Kruger, M. W. (1993). Artificial reality. https://bit.ly/3UyezLb

Kerruish, E. (2019). Arranging sensations: smell and taste in augmented and virtual reality. The Senses and Society, 14(1), 31-45. https://bit.ly/3yEUXfv DOI: https://doi.org/10.1080/17458927.2018.1556952

Liestøl, G. (2011). Situated simulations between virtual reality and mobile augmented reality: Designing a narrative space. In Handbook of augmented reality (pp. 309-319). Springer. DOI: https://doi.org/10.1007/978-1-4614-0064-6_14

Liu, B., Ding, L., & Meng, L. (2021, May). Spatial Learning with Extended Reality–—A Review of User Studies. In 2021 7th International Conference of the Immersive Learning Research Network (iLRN) (pp. 1-5). IEEE. https://ieeexplore.ieee.org/abstract/document/9459374 DOI: https://doi.org/10.23919/iLRN52045.2021.9459374

Laginha, C., & Raposo, D. La Escala de Iconicidad en el ámbito de las Marcas Gráficas. http://www.danielraposo.com/temps/artigos/06_30_17_30_ARTICULO_153-160.pdf

López-Ojeda, W., & Hurley, R. A. (2021). Extended-Reality Technologies: An Overview of Emerging Applications in Medical Education and Clinical Care. The Journal of Neuropsychiatry and Clinical Neurosciences, 33(3), A4-177. https://bit.ly/3rYD5s9 DOI: https://doi.org/10.1176/appi.neuropsych.21030067

Lorente, A. G. (2020). Grados de iconicidad en la Ilustración Científica. El talento hecho ciencia. CIVAE 2020, 2020(2nd), 31. https://bit.ly/39q0lGt

Lv, Z., Li, X., & Li, W. (2017). Virtual reality geographical interactive scene semantics research for immersive geography learning. Neurocomputing, 254, 71-78. https://bit.ly/39mrHND DOI: https://doi.org/10.1016/j.neucom.2016.07.078

Mahmood, T., Scaffidi, M. A., Khan, R., & Grover, S. C. (2018). Virtual reality simulation in endoscopy training: Current evidence and future directions. World journal of gastroenterology, 24(48), 5439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319131/ DOI: https://doi.org/10.3748/wjg.v24.i48.5439

McGrath, J. L., Taekman, J. M., Dev, P., Danforth, D. R., Mohan, D., Kman, N., Crichlow, A. & Bond, W. (2018). Using virtual reality simulation environments to assess competence for emergency medicine learners. Academic Emergency Medicine, 25(2), 186-195. https://bit.ly/3Tm69Wv DOI: https://doi.org/10.1111/acem.13308

Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329. https://bit.ly/2HezCQa

Milk, C. (2015). How Virtual Reality create the Ultimate Empathy Machine. TED Talk. Recuperado de https://bit.ly/3CuP59Y

Nixon, L., Grubert, J., Reitmayr, G., & Scicluna, J. (2012, September). Semantics enhancing augmented reality and making our reality smarter. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 863-870). Springer. https://bit.ly/3EF7W4W DOI: https://doi.org/10.1007/978-3-642-33615-7_29

Peirce, C.S. (1894), «What Is a Sign?" http://bit.ly/3A7KHwZ

Reyes, M. C., & Zampolli, S. (2017, June). Screenwriting framework for an interactive virtual reality film. In 3rd Immersive Research Network Conference iLRN. https://bit.ly/3AsXybs

Ryan, M. L. (1999). Immersion vs. interactivity: Virtual reality and literary theory. SubStance, 28(2), 110-137. https://muse.jhu.edu/article/32231/summary DOI: https://doi.org/10.1353/sub.1999.0015

Ryan, M. L. (2015). Narrative as virtual reality 2: Revisiting immersion and interactivity in literature and electronic media. JHU Press. https://bit.ly/3EBEav5

Serrano, B., Baños, R. M., & Botella, C. (2016). Virtual reality and stimulation of touch and smell for inducing relaxation: A randomized controlled trial. Computers in Human Behavior, 55, 1-8. https://bit.ly/3zo46Xn DOI: https://doi.org/10.1016/j.chb.2015.08.007

Valori, I., McKenna-Plumley, P. E., Bayramova, R., Zandonella Callegher, C., Altoè, G., & Farroni, T. (2020). Proprioceptive accuracy in Immersive Virtual Reality: A developmental perspective. PloS one, 15(1), e0222253. https://bit.ly/3rTBSCu DOI: https://doi.org/10.1371/journal.pone.0222253

Vi, S., da Silva, T. S., & Maurer, F. (2019, September). User experience guidelines for designing hmd extended reality applications. In IFIP Conference on Human-Computer Interaction (pp. 319-341). Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-030-29390-1_18 DOI: https://doi.org/10.1007/978-3-030-29390-1_18

Villafañe, J. (1985). Escala de iconicidad de Justo Villafañe. Recuperado de: http://catarina.udlap.mx/u_dl_a/tales/documentos/mdi/davila_c_me/apendiceC.pdf

Villafañe, J. (2006). Introducción a la teoría de la imagen. Pirámide. https://bit.ly/3hScU1L

Xing, Y., Shell, J., Fahy, C., Guan, K., Zhang, Q., & Xie, T. (2021, May). User Interface Research in Web Extended Reality. In 2021 IEEE 7th International Conference on Virtual Reality (ICVR) (pp. 76-81). IEEE. https://bit.ly/3hQRv9g DOI: https://doi.org/10.1109/ICVR51878.2021.9483702

Xing, Y., Liang, Z., Shell, J., Fahy, C., Guan, K., & Liu, B. (2021, May). Historical Data Trend Analysis in Extended Reality Education Field. In 2021 IEEE 7th International Conference on Virtual Reality (ICVR) (pp. 434-440). IEEE. https://bit.ly/39rtO2w DOI: https://doi.org/10.1109/ICVR51878.2021.9483828

Walczak, K., Rumiński, D., & Flotyński, J. (2014, December). Building contextual augmented reality environments with semantics. In 2014 International Conference on Virtual Systems & Multimedia (VSMM) (pp. 353-361). IEEE. https://bit.ly/3VnCded DOI: https://doi.org/10.1109/VSMM.2014.7136656

Weinbaum, S. G. (1935). Pygmalion's spectacles. Simon and Schuster.

Winkler-Schwartz, A., Bissonnette, V., Mirchi, N., Ponnudurai, N., Yilmaz, R., Ledwos, N., ... & Del Maestro, R. F. (2019). Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. Journal of surgical education, 76(6), 1681-1690. https://bit.ly/3CsoVVj DOI: https://doi.org/10.1016/j.jsurg.2019.05.015

Publicado

2022-11-14

Como Citar

Rubio Tamayo, J. L., & Gértrudix Barrio, M. (2022). Estándares y Clasificación de la Representación de la información y de los Niveles de Virtualidad en el medio de la realidad extendida: Hacia un Modelo Taxonómico de un Paradigma XR. TECHNO REVIEW. International Technology, Science and Society Review /Revista Internacional De Tecnología, Ciencia Y Sociedad, 11(2), 275–291. https://doi.org/10.37467/revtechno.v11.3494